ORIGINAL PAPER

R. J. Angel

Equations of state of Plagioclase Feldspars

Received: 7 May 2003 / Accepted: 31 July 2003 / Published online: 16 October 2003 © Springer-Verlag 2003

Abstract The volume variation with pressure of seven intermediate plagioclase feldspars has been determined by high-pressure single-crystal X-ray diffraction. The bulk moduli of plagioclases for a 3rd-order Birch-Murnaghan EoS can be described by the following pair of equations:

 $K_{T0} = 54.1(3) + 0.39(1)X_{An}X_{An} < 50$

 $K_{T0} = 59.5(3.1) + 0.23(4)X_{An}X_{An} > 50$

with $K'_0 = 5.8$ for plagioclase with $X_{An} < 20$ and $K'_0 = 3.2$ for $X_{An} > 35$. These parameters can also be used in a Murnaghan EoS to describe the volume variation of plagioclase feldspars up to pressures of 3 GPa. For a Murnaghan EoS with $K'_0 = 4$, the values of the bulk moduli can be described by a single equation, $K_{T0} = 57.7(6) + 0.24(1)X_{An}$, with a small loss in the accuracy of the predicted volumes up to pressures of 3 GPa.

Introduction

Plagioclase are among the most common minerals in crustal rocks, yet an examination of both the published literature and the thermodynamic data gathered in databases reveals that there is little or no recent information available on either their room-pressure bulk moduli or their equations of state (EoS). Experi-

Editorial responsibility: T.L. Grove

R. J. Angel Crystallography Laboratory, Dept. GeoSciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA E-mail: rangel@vt.edu Tel.: +1-540-231-7974 Fax: +1-540-231-3386 mental measurements of the compressibility of plagioclases do, however, go back at least to Adams and Williamson (1923). These and subsequent determinations (Adams and Gibson 1929; Bridgman 1948; Yoder Jr. and Weir 1951; Vaidya et al. 1973) were carried out by a variety of press techniques, wherein the change in length of a cylinder of the material of interest was measured as a function of pressure. These experiments were fraught with difficulties arising from the small changes in the length of the specimen under pressure and the need to maintain hydrostatic conditions, to remove all void space from the sample and to correct for the elasticity and the friction in the apparatus. Nonetheless, many of these measurements are sufficiently accurate to reveal that feldspars are significantly stiffer than other framework silicates such as quartz, but softer than olivines and pyroxenes, and that the bulk moduli of plagioclase feldspars increase by about 40% from albite to anorthite. These general results were confirmed by the measurement of the individual components of the elastic constant tensors of five plagioclase samples by Rhyzova (1964). However, these ultrasonic measurements demanded large single-crystal samples and, as a result, several of the measurements were made on twinned specimens while the data were reduced on the assumption of monoclinic rather than the true triclinic symmetry. It is not clear what influence these assumptions might have on the values of the resulting bulk moduli.

Even if these previous experimental data were accurate, they only provide values for the bulk modulus room while (K_{T0}) at pressure both $> K_{T0} = -V_0 (\partial P / \partial V)_{P=0}$ and its pressure derivative $K'_0 = (\partial K_T / \partial P)_{P=0}$ are required to describe the volume evolution of phases with pressure. Therefore, the full determination of the EoS of crystals requires either precise volume data collected at high pressure by X-ray diffraction methods, or direct measurement of the elastic tensor at high pressures. The triclinic symmetry of feldspars places the latter beyond current experimental capabilities, at least for routine measurements. Angel et al. (1988) reported some single-crystal high-pressure diffraction data for end-member feldspars that again confirmed that anorthite was significantly stiffer than albite. However, the precision of the data collected by Angel et al. (1988) was insufficient for both K_{T0} and K'_0 to be determined. In the intervening years the experimental techniques for high-pressure diffraction have improved significantly (Angel et al. 2000) and in this paper new P-V data of higher precision are reported for seven different intermediate plagioclase feldspars. As for all other sub-solidus properties of feldspars, these data reveal that the high-pressure behavior of plagioclase feldspars is complex. A full description of this behavior is not, however, the purpose of this contribution. Instead the aim here is to derive parameters for the EoS of plagioclase feldspars that are sufficiently reliable for use in thermodynamic calculations at modest temperatures and pressures.

Samples and experiments

Single crystals of natural anorthite-rich plagioclases were selected from mineral separates prepared for previous studies by Dr. M.A. Carpenter of the University of Cambridge. Samples designated "Hawk b", "Lake Co", "101377a" and "87975a" are described in full by Carpenter et al. (1985). All of these samples were heattreated at 800 °C for ~12 hours in the preparation for the previous calorimetric measurements by Carpenter et al. (1985). Two further crystals were selected from crushed portions of rocks of specimens 67791 and 67783 of the Harker collection, University of Cambridge. All of these plagioclase samples have low orthoclase contents (a maximum of 3 mol% in Hawk-b) and were chosen because they are probably representative of the highest state of Al/Si tetrahedral order possible at each composition. Full single-crystal structure analyses of samples 87975a, 101377a and Lake Co were reported by Angel et al. (1990). Sample101377a/1 was heat-treated at 1300 °C to induce partial Al/Si disorder (Carpenter et al. 1985), which was then determined by subsequent single-crystal structure determination (Angel et al. 1990). The compositions of the individual crystals used in the high-pressure measurements were not determined, but the compositional range of each sample as determined by electron microprobe analyses is reported in Table 1.

Each crystal was loaded in turn into a BGI diamond-anvil pressure cell with a 4:1 mixture of methanol and ethanol as the hydrostatic pressure medium and a second crystal of quartz or fluorite for use as an internal pressure standard. Unit-cell parameters of each crystal at each pressure were obtained by vector least-squares fit (Ralph and Finger 1982) to the diffractometer setting angles of between 20 and 30 strong reflections determined by the SINGLE software (Angel et al. 2000) on a Huber four-circle diffractometer (Angel et al. 1997). Pressures were determined from the measured unit-cell volumes of the standard crystals via their known equations of state (Angel 1993; Angel et al. 1997). Pressures and unit-cell parameters are listed in Table 2.

These data were supplemented by the dataset for low albite published by Downs et al. (1994). The parameters of the equations of state for each sample were determined by a least-squares fit of the pressure-volume data with v5.2 of the EoSFit software (Angel 2000). Weights derived from the experimental uncertainties in both pressure and volume were assigned to each data point in every fit. Birch-Murnaghan EoS (Birch 1947) based upon the Eulerian definition of finite strain were used to fit the data and to provide the basis for discussion, but the parameters for the Murnaghan EoS (Murnaghan 1937) are provided at the end for those thermodynamic databases that use this formulism.

	Sample	Source	Structural state	Compositional range	Mean composition
An20	Hawk b	Harvard University mineral collection 97608	$C\bar{1}$ with some weak and diffuse <i>e</i> reflections	${ m An}_{20-21}{ m Ab}_{76-77}{ m Or}_3$	$\mathrm{An}_{20}\mathrm{Ab}_{77}\mathrm{Or}_3$
$An37^{a}$	67791	Harker Collection, University of Cambridge	$C\overline{1}$ with e reflections	An ₃₅₋₅₈ Ab ₆₀₋₆₂ Or ₂₋₃	$An_{37}Ab_{61}Or_2$
$An46^{a}$	67783	Harker Collection, University of Cambridge	$C\overline{1}$ with e and f reflections.	$^{b}An_{45-47}Ab_{51-53}Or_{2}$	$An_{46}Ab_{52}Or_2$
An68	Lake Co.	USNM collection no. 115900	$I\overline{I}$ b reflections slightly elongated	An ₆₆₋₇₀ Ab ₂₉₋₃₃ Or ₀₋₁	$An_{68}Ab_{31}Or_1$
An780	101377a	Harker Collection, University of Cambridge	$I\overline{I}$ sharp b reflections, diffuse c reflections	$An_{76-78}Ab_{22-24}Or_0$	$An_{78}Ab_{22}Or_0$
An78d	101377a/1	101377a heat-treated by Carpenter et al (1985)	$I\overline{I}$ sharp, weak b reflections, very diffuse c reflections	$An_{76-78}Ab_{22-24}Or_0$	$An_{78}Ab_{22}Or_0$
An89	87975a	Harker Collection, University of Cambridge	$I\overline{I}$ sharp b reflections	${ m An}_{88-90}{ m Ab}_{10-12}{ m Or}_0$	$\mathrm{An_{89}Ab_{11}Or_0}$

Table 1 Structural state and compositional data for plagioclase used in this study

Data from Carpenter et al. (1985) except ^aCarpenter (personal communication) and ^bO'Brien (personal communication).

Table 2 Pressures and unit-cell parameters of the sample crystals

Table 2 ((Contd.)
-----------	----------

P GPa	V Å ³	esd(P) GPa	esd(V Å ³	7)		P GPa	V Å ³	esd(P) GPa	esd(V) Å ³
An20						4.062	1276.700	0.01	0 0.124
0.000	667.893	0.000	0.076			4.489	1270.600	0.01	2 0.098
0.832	659.186	0.004	0.047			4.929	1264.776	0.01	2 0.086
1.364	653.925	0.005	0.061			5.748	1253.350	0.00	0.099
1.939	648.564	0.005	0.053			An89			
2.843	640.524	0.005	0.039			0	1339.014	0.00	0 0.098
3.488	635.014	0.005	0.053			0.473	1331.229	0.00	0.057
4.737	624.891	0.006	0.037			1.071	1321.727	0.00	06 0.054
5.510	618.875	0.007	0.050			1.637	1312.883	0.00	
0.440	606 032	0.007	0.039			2.234	1205.302	0.00	0.002
7 746	602.068	0.007	0.050			3 411	1295.805	0.00	0.005
8 234	598 699	0.007	0.033			3 904	1279 488	0.00	0.001
An38	570.077	0.007	0.015			4.104	1276.493	0.00	0.065
0.000	667.893	0.000	0.076			4.560	1270.227	0.00	0.051
0.832	659.186	0.004	0.047			4.971	1264.357	0.00	0.067
1.364	653.925	0.005	0.061			5.238	1260.803	0.00	07 0.048
1.939	648.564	0.005	0.053			5.649	1255.450	0.00	0.085
2.843	640.524	0.005	0.039			6.594	1242.858	0.01	0 0.075
3.488	635.014	0.005	0.053			7.133	1235.746	0.00	0.080
4.737	624.891	0.006	0.037						
5.510	618.875	0.007	0.050						
0.448	606 032	0.007	0.059						
7.104	602.068	0.007	0.050			Results			
8 234	598 699	0.003	0.033						
An46	570.077	0.007	0.015			The vol	umes of all	of the same	mples studied evolve
0.000	668.463	0.000			0.044	smoothly	v with incre	asing pressu	re (Fig 1) However
0.708	662.078	0.005			0.082	this opp	orontly sime	ala pietura	actually masks much
1.297	656.915	0.006			0.054	tins app	mentary and an	bille trende the	hat any masks much
2.014	650.774	0.006			0.049	more con	mplex and su	iblie trends ti	hat are more apparent
2.808	644.589	0.005			0.109	if the vol	lume-pressure	e data 1s tran	stormed into an <i>f</i> - <i>F</i> or
3.424	639.483	0.007			0.059	normalis	ed stress—fin	<i>iite strain</i> plo	ot for the purposes of
4.059	634.523	0.007			0.115	diagnost	ics (e.g. Ang	gel 2000). Fo	r a Birch-Murnaghan
4.638	630.195	0.005			0.089	EoS the	finite strain	$\operatorname{is} f_E = \left[(V_0 / V_0) \right]$	$(7)^{2/3} - 1 / 2$, a norma-
5.270	618 240	0.009			0.009	lised stre	ess is defined	as $F_E = P/3$	$f_{E}(1+2f_{E})^{5/2}$ and the
7 359	611 071	0.010			0.000	FoS can	be re-writter	as a nolyno	mial in the strain (e σ
An68	011.071	0.012			0.101	Stacey e	t = 1 + 1081	i as a polyno	iniai în the strain (e.g.
0	1339.017		0.000	0.064		Stacey e	t al. 1901).		
1.240	1317.696		0.009	0.072			$3K_0$		
2.111	1303.213		0.035	0.124		$F_E = K_0$	$+\frac{1}{2}(K'_0 -$	$(4)f_E$	
2.905	1291.452		0.011	0.074		2	$K_{\rm r}$,	35)
3.430	1283.456		0.009	0.076		+ -	$\frac{K_0}{K_0} (K_0 K'' +$	(K'-4)(K'-	$(-3) + \frac{33}{2} f_{E}^{2} + \dots$
3.897	1276.494		0.009	0.076			$2 \sqrt{2}$		$9 \int E$
4.425	1269.012		0.013	0.054					(1)
4.727	1204.810		0.013	0.088					(1)
5.630	1257.512		0.013	0.038		If the	P-V data a	re transforme	ed into $f_{\rm E}$ and $F_{\rm E}$ and
An78 o	rdered		0.012	0.119		nlattad x	with f on the	abairan a c	$f_{\rm E}$ and f
0	1339.213		0	0.062			f_E as the	auscissa, a C	d If the date resists all
2.149	1303.680		0.008	0.068		compres	sional denavi	or is obtained	a. If the data points an
2.592	1297.165		0.009	0.052		lie on a	horizontal lir	ne of constan	t F_E then $K' = 4$, and
3.214	1287.831		0.009	0.056		the data	can be fitted	with a 2nd-c	order truncation of the
3.429	1284.867		0.008	0.080		Birch-M	urnaghan Ec	oS. If the da	ata lie on an inclined
4.062	1275.736		0.010	0.055		straight	line. the slop	e is equal to	$3K_0(K'-4)/2$ and the
4.489	1269.459		0.012	0.105		data wil	1 be adequate	elv described	by a 3rd-order trun-
4.929	1263.471		0.012	0.116		action of	f the EoS If	the value of	V'' differs significantly
An/8 d	isordered		0.000	0.000		fue and the		d less the 2 and	K uniers significantly
0 020	1339.968		0.000	0.082		from the	value implie	a by the sra-	order truncation, then
0.939	1324.349		0.000	0.100		the coeff	icient of f^2 in	n Eq. 1 is not	zero and the data fall
2 149	1304 477		0.008	0.093		on a pa	rabolic curve	e in the $F-f$	plot. In all cases, the
2.592	1297 913		0.009	0.087		intercept	t on the F ax	is is the valu	e of K_{T0} .
3.214	1200 772		0.000	0.085		The <i>t</i>	-F plot (Fig	2) of the pl	agioclase data clearly
	1288.772		0.009	0.000		1 110 /	1 prot ti ie.	= 1 or the $$	agiociase data cicariv
3.429	1288.772 1285.685		0.009	0.119		indicates	s that the pres	ssure derivati	ves of the bulk moduli

Fig. 1 Variation of the volume of plagioclase feldspars with pressure. *Symbols* are measured data as listed in Table 2, *numbers* are the sample compositions in X_{An} . The *lines* are fitted Birch-Murnaghan EoS with the parameters listed in Table 3. Data for the An78d sample are omitted, as they are indistinguishable on this scale from the data for An78o. Data for plagioclases with $X_{An} > 50$ have been plotted as one-half of the true $I\overline{I}$ unit-cell volume so as to appear on the same plot. Data for low albite are taken from Downs et al. (1994)

rich samples (albite itself and An20) the positive slopes indicate that the room-pressure values of K'_0 are significantly greater than 4. By contrast, all of the samples with An contents of 38% or higher exhibit negative slopes in the *f*-*F* plot and hence values of K'_0 less than 4, mostly around a value of 3.2. In this sense, the An20 sample appears to be intermediate in its behavior, in that the low-pressure value of K'_0 is certainly greater than 4. However the plot shows that K''_0 is negative, so that K''_0 decreases with increasing pressure until it is 4 at around 3.5 GPa and less than 4 at higher pressures. The data for An20 can therefore only be fit satisfactorily by a 4thorder EoS whereas the remainder are fit with a 3rd-order EoS. Lastly, the *f*-*F* plot of the data for the An89 sample shows an abrupt change in slope at a pressure of 3.6 GPa as a result of the smeared transition from P1 symmetry to $I\overline{1}$ symmetry (Angel et al. 1989). Parameters for the Birch-Murnaghan EoS of all the samples are reported in Table 3.

Leaving aside these other complications, the room pressure bulk moduli of the plagioclase feldspars increase with increasing anorthite content (Fig. 3) in agreement with the ultrasonic data of Rhyzova (1964). However, the values of K_s derived from the ultrasonic data are between 2 and 5 GPa lower than the values obtained from the new *P*-*V* datasets. This may be a result of the use of twinned crystals and the assumption of

Eulerian Strain f

Fig. 2 The volume-pressure data of the plagioclase feldspars displayed as a plot of the normalized pressure F against the Eulerian strain *f. Numbers* are the sample compositions in X_{An} . Data for the An78d sample are omitted, as they are indistinguishable on this scale from the data for An78o. Data for low albite are taken from Downs et al. (1994). The *lines* are fitted Birch-Murnaghan EoS with the parameters listed in Table 3

Table 3 Parameters for Birch-Murnaghan EoS

Comp	N _{data}	P _{max} GPa	$\overset{V_0}{\overset{}{A^3}}$	K ₀ GPa	K	$K^{\prime\prime}$ GPa^{-1}	χ^2_w	ΔP_{max} GPa
An0	13*	4.05	664.04(9)	53.8(9)	6.0(6)	[-0.186]	0.48	0.054
An20	12	8.23	667.88(7)	61.2(5)	5.6(4)	-0.94(14)	0.49	0.017
An37	10	5.59	669.01(7)	69.7(7)	3.2(3)	[054]	2.21	0.037
An46	11	7.36	668.46(4)	72.8(4)	2.7(2)	[059]	0.82	0.030
An68	10	5.63	1339.02(7)	75.4(5)	3.4(2)	[049]	0.29	0.026
An780	8	4.93	1339.21(7)	76.9(6)	3.4(3)	[047]	1.29	0.015
An78d	11	5.75	1339.98(10)	77.5(5)	3.2(2)	[048]	1.47	0.023
An89	7	3.41	1339.02(9)	80.4(7)	3.2(4)	[046]	0.18	0.004

Note: Numbers in parentheses represent esd's in the last digit. Numbers in square brackets are the implied values of the parameters. ΔP_{max} is the largest absolute misfit to a *P-V* data point.*Data from Downs et al. (1994). The data point at 0.4 GPa was omitted because it clearly lies off the trend defined by all of the other data points.

monoclinic symmetry in the ultrasonic measurements (Rhyzova 1964). The new data suggest that, in addition, there appears to be a break in the dependence of the bulk modulus with composition around An50 that coincides with the phase transition from the $C\overline{1}$ structures of the albite-rich compositions to the $I\overline{1}$ structures

Fig. 3 The variation of the bulk moduli of plagioclase feldspars with composition. The *filled* squares with error bars are the isothermal bulk moduli of the fitted Birch-Murnaghan EoS with the parameters listed in Table 3, open squares are from the constrained Birch-Murnaghan EoS (Table 4) and the *triangles* are the bulk moduli for the Murnaghan EoS with $K'_0 = 4$ (Table 5). The values of K_{S0} from Rhyzova (1964) are plotted as open circles

of the anorthite-rich plagioclases. This transition is also accompanied by a change in the behavior of the lattice parameters of the ordered (so-called "low") plagioclases with composition (Bambauer et al. 1967) and reflects the change in the pattern of ordering of the Al and Si within the tetrahedral framework.

There is no reason to suppose that the bulk modulus should vary linearly with composition, even over part of the plagioclase join. In fact, the demonstrated existence of the "plateau" effect in alkali feldspars (Hayward and Salje 1996; Hayward et al. 1998) would suggest that the relationship should be non-linear, especially near the end-members and near phase transitions. Nonetheless, the bulk moduli can be approximated by two linear segments (Fig. 3) with equations:

 $K_{T0} = 53.1(7) + 0.43(2)X_{An}X_{An} < 50$

 $K_{T0} = 59.5(3.1) + 0.23(4)X_{An}X_{An} > 50$

Extrapolation of the second segment to An100 would suggest that the bulk modulus of $I\bar{1}$ anorthite would be around 82.5 GPa, well within the range of 78–86 GPa reported for $P\bar{1}$ anorthites by Hackwell and Angel (1992).

The other important observation is that the bulk moduli of the natural and disordered samples of An78 composition are indistinguishable (Table 3). So, for petrologically relevant ranges of Al/Si disorder it appears that ordering has no significant effect on the bulk elastic properties of $I\bar{1}$ plagioclases. Since disordering in plagioclase is accompanied by a small increase in the room-pressure unit-cell volume (Bambauer et al. 1967; Carpenter et al. 1985) this means that the disordered material will remain less dense than the ordered material at all pressures. Therefore, the driving force for ordering will increase as the $P\Delta V$ term increases with increasing pressure. The same conclusion was drawn from a structural study of albite by Downs et al. (1994).

Discussion

For the purposes of the incorporation of these data into thermodynamic databases aimed at predicting the thermodynamic properties of minerals at pressures and temperatures of relevance to rocks, some reasonable simplifications can be made. First, we note that most of the anomalous behavior in the EoS of plagioclases that has been described above occurs at pressures in excess of 3 GPa, well beyond the pressure range at which plagioclase is thermodynamically stable. There are two caveats to this. Presumably, for compositions between An20 and An37 there may be complex EoS behavior at lower pressures. The boundary of the $P\bar{1}$ to $I\bar{1}$ phase transition in anorthite-rich feldspars has also yet to be mapped out in *P*-*T*-*X* space although the work of Angel et al. (1989) and Hackwell and Angel (1995) suggest that it is restricted to very low temperatures and is therefore not a factor in determining the elastic properties of anorthites even at the lowest metamorphic grades. Secondly, the values of K'_0 obtained from the data fall into two groups, around 5.8 for the albite-rich samples, and 3.2 for the remainder. Parameters for 3rd-order Birch-Murnaghan EoS were therefore obtained by re-fitting the data with these constraints and are reported in Table 4. The bulk moduli of the feldspars with $X_{An} > 50$ do not differ significantly from the values obtained in the unconstrained fits reported in Table 3 and the trend with composition is indistinguishable from that reported above. By contrast, the constrained fits result in considerably more scatter in the values of the bulk moduli of the albite-rich plagioclases (Fig. 3), with the result that it is not clear whether the trend of these data with $K_{T0} = 54.1(3) + 0.39(1)X_{An}$ represents a significant difference from that reported above.

Up to a pressure of 3 GPa the plagioclase structures undergo about 5% compression. This is sufficiently small for the Murnaghan EoS to provide an adequate

Table 4 Parameters for 3^{rd} -order Birch-Murnaghan EoS with K'_0 fixed

Comp	$N_{\rm data}$	$P_{\rm max}$	V_0	K_0	K	χ^2_w	ΔP_{max}
		GPa	$Å^3$	GPa			GPa
An0	13	4.05	664.03(9)	54.2(3)	5.8	0.45	0.058
An20	6	3.49	668.04(10)	59.7(4)	5.8	3.48	0.019
An37	10	5.59	669.02(6)	69.6(2)	3.2	1.93	0.036
An46	11	7.36	668.55(7)	71.4(2)	3.2	3.2	0.048
An68	10	5.63	1339.00(7)	75.7(2)	3.2	0.33	0.031
An780	8	4.93	1339.20(7)	77.3(2)	3.2	1.17	0.018
An78d	11	5.75	1339.98(9)	77.5(2)	3.2	1.32	0.024
An89	7	3.41	1339.02(7)	80.5(2)	3.2	0.15	0.005

Table 5 Parameters for Murnaghan EoS with $K'_0 = 4$

Comp	$\overset{V_{O}}{\overset{A^{3}}{A}}$	K ₀ GPa	χ^2_w	ΔP_{max} GPa
An0	663.93(10)	56.9(3)	1.46	0.087
An20	667.83(5)	62.5(2)	0.59	0.007
An37	669.08(9)	67.8(3)	4.4	0.047
An46	668.7(2)	69.0(5)	19.7	0.127
An68	1339.08(9)	73.8(2)	2.16	0.036
An77o	1339.2(1)	75.7(2)	2.56	0.034
An77d	1340.2(2)	75.5(3)	4.6	0.053
An89	1339.11(7)	79.2(2)	0.90	0.011

Data ranges same as for Table 4.

representation of the *P-V* relations in this pressure range, with the same values of bulk modulus and K'_0 as reported in Table 4. However, the deviation of the volumes predicted by the Murnaghan form from that predicted by the Birch-Murnaghan formulism at higher pressures means that the Murnaghan formulism *must not* be used to predict the volumes of plagioclase feldspars at pressures above 3 GPa. Similarly, care must be taken in extrapolating the Birch-Murnaghan EoS to pressures in excess of the reported data as there is no reason to suppose that further complexity in behavior, beyond that already observed in the current datasets, does not occur at higher pressures.

Several thermodynamic databases incorporate the Murnaghan EoS with K'_0 set to 4 for all phases (e.g. Holland and Powell 1998). Therefore Table 5 lists values of bulk moduli obtained by fitting the P-V data with $K'_0 = 4$. The increased values of both the misfits (ΔP_{max}) and the χ^2_w over the fits listed in Tables 3 and 4 clearly indicate that the restriction of K'_0 to 4 is not consistent with the P-V data and therefore results in a bias in the values of K_{T0} . For albite-rich plagioclase whose true value of K'_0 is ~5.8, the value of K_{T0} is increased when K'_0 is reduced to 4, while the opposite is true for the remainder of the plagioclase compositions with true values of $K'_0 \sim 3.2$ This shift in values does have the advantage that the bulk moduli can be described by a single equation: $K_{T0} = 57.7(6) + 0.24(1)X_{An}$ In the worst case, the use of these moduli with $K'_0 = 4$ results in about a 0.1% error in the volume predicted for intermediate plagioclases at pressures of 3 GPa. The discrepancy

increases at higher pressures but, as noted above, this is not of practical concern.

Acknowledgements Michael Carpenter generously donated the samples and provided details of some unpublished electron microprobe and TEM analyses, and Patrick O'Brien analyzed sample 67783. The X-ray diffraction data was collected while the author was a member of the Bayerisches Geoinstitut in Bayreuth. Data analysis was supported by NSF grant EAR-0105864 to NL Ross and RJ Angel at Virginia Tech.

References

- Adams L, Gibson R (1929) The elastic properties of certain basic rocks and of their constituent minerals. Proc Nat Acad Sci 15:713–724
- Adams L, Williamson E (1923) On the compressibility of minerals and rocks at high pressures. J Franklin Institute 195:475–529
- Angel R (2000) Equations of state. In: R. M. Hazen and R. T. Downs (eds) High-pressure and high-temperature crystal chemistry. MSA Reviews in Mineralogy and Geochemistry 41, pp35–60
- Angel RJ (1993) The high-pressure, high-temperature equation of state of calcium-fluoride, CaF₂. J Phys-Condens Matter 5:L141-L144
- Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr 30:461–466
- Angel RJ, Carpenter MA, Finger LW (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. Am Mineral 75:150–162
- Angel RJ, Downs RT, Finger LW (2000) High-pressure, hightemperature diffractometry. In: R. M. Hazen and R. T. Downs (eds) High-pressure and high-temperature crystal chemistry. MSA Reviews in Mineralogy and Geochemistry, pp 41559–596
- Angel RJ, Hazen RM, McCormick TC, Prewitt CT, Smyth JR (1988) Comparative compressibility of end-member feldspars. Phys Chem Minerals 15:313–318
- Angel RJ, Redfern SAT, Ross NL (1989) Spontaneous strain below the $I\overline{I} - P\overline{I}$ transition in anorthite at pressure. Phys Chem Minerals 16:539–544
- Bambauer H, Eberhard E, Viswanathan K (1967) The lattice constants and related parameters of "Plagioclases (low)". Schweiz Min Pet Mitt 47:351–364
- Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824.
- Bridgman P (1948) Rough compressions of 177 substances to 40,000 Kg/cm². Proc Amer Acad Arts Sci 76:71–87
- Carpenter MA, McConnell JDC, Navrotsky A (1985) Enthalpies of ordering in the plagioclase feldspar solid solution. Geochim Cosmochim Acta 49:947–966
- Downs R, Hazen RM, Finger LW (1994) The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al-Si ordering. Am Mineral 79:1042–1052
- Hackwell TP, Angel RJ (1992) The comparative compressibility of reedmergnerite, danburite and their aluminum analogs. Eur J Mineral 4:1221–1227
- Hackwell TP, Angel RJ (1995) Reversed brackets for the $I\overline{I} P\overline{I}$ transition in anorthite at high-pressures and temperatures. Am Mineral 80:239–246.
- Hayward SA, Salje EKH (1996) Displacive phase transition in anorthoclase: The "plateau effect" and the effect of T1-T2 ordering on the transition temperature. Am Mineral 81:1332– 1336
- Hayward SA, Salje EKH, Chrosch J (1998) Local fluctuations in feldspar frameworks. Min Mag 62:639–645
- Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

- Murnaghan F (1937) Finite deformations of an elastic solid. Amer J Maths 49:235–260
- Ralph R, Finger LW (1982) A computer program for refinement of crystal orientation matrix and lattice constants from diffractometer data with lattice symmetry constraints. J Appl Crystallogr 15:537–539
- Rhyzova T (1964) Elastic properties of plagioclase. Bull Acad Sci USSR, Geophysics series: 633–635
- Stacey F, Brennan B, RD I (1981) Finite strain theories and comparisons with seismological data. Geophys Surveys 4:189– 232
- Vaidya S, Bailey S, Pasternack T, Kennedy G (1973) Compressibility of fifteen minerals to 45 kilobars. J Geophys Res 78:6893–6898
- Yoder Jr. HS, Weir CE (1951) Change of free energy with pressure of the reaction nepheline + albite = 2 jadeite. Amer J of Sci 249:683–694